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Abstract
We propose a quantum trajectory analysis of a scheme to measure the states of a coupled-dot
device (qubit) where there is a fluctuating energy gap � between the two states. The system
consists of the qubit and a readout dot coupled to source and drain leads. The tunnel rate
through the detector is conditioned by the occupation number of the nearer quantum dot (target)
of the qubit and therefore probes the states of the qubit. We derive a Lindblad-form master
equation to calculate the unconditional evolution of the qubit and a conditional stochastic
master equation calculating the conditional evolution for different tunneling rates. The results
show the effects of various device parameters and provide the optimum selection and
combination of the system structure.

1. Introduction

There has been wide interest and numerous proposals
in the area of quantum transport and measurement in
mesoscopic electronic systems both theoretically [1–9] and
experimentally [10–12]. Coupled quantum dots have been
suggested as qubits: the basic element of a quantum computer.
In addition to manipulations of quantum states, a readout
device is required to perform quantum measurements of
the resulting state of the qubit. The accurate readout of
data encoded in the qubit states is an important part of
the performance of a quantum computer. There have been
interesting reports on relevant experiments, for instance,
measuring current tunneling through a quantum dot [12],
detecting bidirectional flowing electrons [11], and projective
readout of dephasing time in coupled electron spins [10].

In this paper, we apply the quantum trajectory theory,
introduced for open systems in quantum optics in [13], to the
problem of monitoring a coupled quantum dot system. The
system is coupled to an apparatus which includes a bath or
reservoir (the source and drain leads). This coupling takes
place via unitary quantum evolution, and tracing over the
apparatus results in a mixed state for the system. Quantum
trajectory theory is based on applying the measurement
postulate of quantum mechanics to the apparatus. The
measurement process reveals information about the system
(and apparatus), and one can calculate a density matrix ρ for

the system which is conditioned on the results of observation of
the apparatus. This state is more pure than the unconditioned
state, but is still not pure in general. This procedure
introduces a statistical element into the system dynamics—the
conditioned ρ evolves stochastically. We assume that in the
absence of measurement (or averaging over the measurement
results), the irreversible evolution is described by a Lindblad
master equation [14]. This ensures that, even with the
measurement included, the stochastic master equation [12]
still preserves the three basic properties of the density matrix:
positivity, Hermiticity and norm. By contrast, as we showed
in [8], some commonly used master equations for the regime
of the readout device (RD) operating in sequential-tunneling
are not of the Lindblad form.

We derive a Lindblad-form master equation and a
corresponding conditional stochastic master equation to
describe the conditioned evolution of a qubit under weak
continuous measurement. The detector is a quantum tunneling
RD such as the quantum contact point, single electron
transistor, or quantum dot coupled to source and drain leads.
The measured system is a coupled quantum dot or charge
qubit. Unlike previous related work [4], we do not assume
that the qubit energy levels are degenerate. This leads to quite
different behavior in the stochastic trajectories of the system.
The ensemble-averaged evolution of the qubit state is also
calculated for various parameter combinations to estimate the
optimum selection.
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The paper is organized as follows. In section 2 we
introduce the system and modeling followed by section 3
calculating trajectories in the cases without and with a variable
energy gap between the two dot states. We discuss the results
and parameter comparison with reported experimental data in
section 4, and summarize in section 5.

2. The system and modeling

The system studied is depicted schematically in figure 1. The
charge qubit consists of two spatially separated quantum dots,
which are strongly coupled. There is only one single electronic
bound state that can be occupied in each dot of the qubit.
A single excess electron is shared by the coupled-quantum-
dot. The energy difference between these two bound states
is � and the electron can tunnel between two dots at rate
t . The RD determines the presence of the electron on one
of the dots, for example dot 1 in the diagram (as the target).
The interaction between the target and RD changes the current
flowing through the RD. That is, in the RD the electron-
tunneling rate is conditioned on the occupation of the target
dot at D0 and D0 + D1 for non-occupied and occupied cases,
respectively.

The total Hamiltonian of the qubit system for the coherent
coupling case (� = 0) is

H = h̄
2∑

i=1

ωi c
†
i ci + ih̄

t

2
(c†

1c2 − c†
2c1), (1)

where c†
i , ci represent the Fermi annihilation and creation

operators for the single electron state of the i th dot and t is
the tunneling rate between two dot states. For the readout
device, the background tunneling current, when the target is
not occupied, is D0, and the rate of the detected signal of the
occupation of the target is D0 + D1 with D1 > 0. We assume
that the tunneling through the RD is one way only (↓ direction
as shown in figure 1) and the escaping tunneling rate from
the center island to the drain is large compared to other rates
(e.g. the entry rate from the source to the center island). Based
on these assumptions we can derive a Lindblad-form ‘master
equation [4]:

dρ

dt
= −i[H, ρ] + γdec{c†

1c1ρc†
1c1 − 1

2 [c†
1c1c†

1c1ρ

+ ρc†
1c1c†

1c1]},
where γdec = 2D0 + D1 is the decoherence rate. The stochastic
record of measurement comprises a sequence of times at which
electrons tunnel through the RD. In the zero response-time
limit, the current consists of a sequence of δ function spikes:
i(t) = e dN/dt where dN(t) is a classical point process
defined by the following conditions

[dN(t)]2 = dN(t)

E[dN(t)]/dt = D0 + D1Tr[c†
1c1ρc(t)c

†
1c1],

(2)

where E[x] indicates a classical average of a classical
stochastic process x . The first condition states that dN(t)
equals zero or one. The second means that the rate of events

Figure 1. Illustration of the system.

is equal to the quiescent rate D0 plus an additional rate D1 if
and only if the electron is in the target dot. Applying the theory
of open quantum systems [13], we obtain the stochastic master
equation conditioned on the observed event in time dt as [4]

dρc = dN

[
D0 + D1T [c†

1c1] + 2D0D[c†
1c1]

D0 + D1Tr[ρcc
†
1c1]

− 1

]
ρc

+ dt

[−D1

2
{c†

1c1, ρc} + D1Tr[ρcc
†
1c1]ρc − i[H, ρc]

]
(3)

where T [A]B = AB A†, {A, B} = AB + B A and D[A]B =
T [A]B − (A† AB + B A† A)/2.

3. Calculations

3.1. Coherent tunneling case

To simplify the calculations we introduce the Bloch
representation of the state matrix:

ρ = 1
2 (I + xσx + yσy + zσz). (4)

The Pauli matrices are defined as

σx = c†
1c2 + c†

2c1, σy = i(c†
2c1 − c†

1c2),

σz = c†
2c2 − c†

1c1.
(5)

The moments of the Pauli matrices are given by 〈σα〉 = α

(α = x, y, z), which provide physical meanings. For example,
when the system is in a definite state (dot 1 or dot 2), the
average population difference z is equal to ±1. The set of
coupled stochastic differential equations for the Bloch sphere
variables can be expressed as

dxc =
(

−t · Zc − D1

2
zcxc

)
dt − xcdN(t),

dyc = − D1

2
zcyc dt − yc dN(t),

dzc =
[

txc + D1

2
(1 − z2

c)

]
dt −

[
D1(1 − z2

c)/2

D0 + D1(1 − z2
c)/2

]
.

(6)
Detailed derivation and approximations are referred to

in [4]. The subscript c indicates that these variables refer to the
conditional state. Calculated trajectories at various coupling
rates when D0 = 0 are plotted in figure 2. When the coupling
between the dots is small (t < γdec/2) the electron is located
in a fixed dot (z = −1 at dot 2 and z = +1 at dot 1) for a
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Figure 2. Trajectories for various coupling rates: t = (a) 0.1;
(b) 0.5; (c) 5D1.

long time until a sudden transition, as shown in figure 2(a).
For the strong coupling case, as shown in figure 2(c) when
t � γdec/2, the trajectory shows nearly sinusoidal oscillations
with jumps occurring at an average rate of γdec/2, this means
that the electron is not localized but shared by two dots through
the strong tunneling. In figure 2(b), with the moderate coupling
strength, the trajectory shows that the electron is neither well
localized nor regular harmonically oscillating between two
dots.

3.2. Energy gap � �= 0 case

We extend the application to the case where there is an energy
difference of � �= 0 between two dot states, which is a model
of, for example, the qubit system proposed by Kane [15]. The
relevant Hamiltonian can be written as H = (� t

t 0

)
, where t

is the tunneling between two states. The stochastic differential
equations for the Bloch sphere variables describing conditional
dynamics now become

dxc =
(

−tzc − yc� − D1

2
xczc

)
dt − xc dN(t)

dyc =
(

xc� − D1

2
yczc

)
dt − yc dN(t)

dzc =
(

txc + D1

2
(1 − z2

c)

)
dt − D1(1 − z2

c)/2

D0 + D1(1 − z2
c)/2

dN(t).

(7)
The numerical calculation results are presented in figure 3.

By comparison with figure 2 one can see the effect of the
energy gap. It takes a much longer time to tunnel through
the gap from one dot to the other for the low tunneling rate
case (note: the timescales on the horizontal axes are different
in these two figures) while quasi-harmonic oscillation features
are kept in the high tunneling rate region (tunneling rate t �
gap�). For the moderate coupling rate, the plot shows non-
localization and non-sinusoidal oscillations between two dots
with lower frequency compared to those in figure 2.

Figure 3. Trajectories for various t with � = 1, the parameters are
shown on top of each plot and the rates are all normalized by D1.

(This figure is in colour only in the electronic version)

In order to investigate the influences of various parameters
of devices on the system dynamics (performance) we
investigate the unconditional ensemble average properties of
the system in detail.

3.3. Ensemble average properties

The relevant Hamiltonian can be diagonalized by rotating by
an angle of θ = 1

2 tg−1( 2t
�

) to H̃ = ( α 0
0 β

)
with

α = 1
2 (� +

√
�2 + 4t2); β = 1

2 (� −
√

�2 + 4t2)

(8)
the transformation from the original representation to the new
representation is given by:

( x̃
ỹ
z̃

)
=
( cos(2θ) 0 sin(2θ)

0 1 0
− sin(2θ) 0 cos(2θ)

)( x
y
z

)
.

In the new representation, the evolution of the ensemble-
averaged Bloch sphere variables is described by
( ˙̃x

˙̃y
˙̃z

)
=
⎛

⎝
−γdec

2 cos2(2θ)
√

�2 + 4t2 −γdec

4 sin(4θ)

−√
�2 + 4t2 −γdec

2 0
−γdec

4 sin(4θ) 0 −γdec

2 sin2(4θ)

⎞

⎠

×
( x̃

ỹ
z̃

)
. (9)

We can monitor the state of the qubit from the evolution
of the moment z. The calculated results of ensemble-
averaged evolution of the system state are plotted in figures 4–
8 illustrating the influence of various parameters. When a
particular parameter is chosen to vary in a plot, all other
parameters in the figure are fixed.

4. Results and discussion

For the ensemble evaluation of the qubit state we use the
approximate values of real � and t given by Kane [15],
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Figure 4. Locality of the electron at D0 = 0.5, � = 0.1 and
t = 10−4 D1.

Figure 5. Influence of �: from the top � = 10, 5, 0.2, 0.1 D1.

i.e. �/h = 110 GHz and 2t/h = 1 GHz. The values of
the ratio of t/� in all plots are therefore chosen as 5 × 10−3.

Figure 4 shows a typical evolution of the locality of the
state. It is obvious that the system is not oscillating but deviates
from the initial state to a mixed state as time approaches
‘infinity’, which is different from the coherent tunneling case.
The inset gives enlarged details of the early stage, which shows
a sharp deviation followed by a flatter slope. Figures 5–7 show
the effects of the energy gap �, the coupling rate between the
two dots t and the quiescent rate of current tunneling through
the RD D0, respectively.

In the plots, all parameters are normalized by the rate
D1. Both top lines (a) in figures 6 and 8 are very close to
the top frame edge. As expected, we see that for larger �

(figure 5(a)) and smaller t (figure 6(a)), the deviation is slower
and the smaller background rate of the detector D0 ((c) in
figure 7), the better the measurement quality. The interesting
feature in figure 7 is that with a small D0, z shows a sharp
first slope followed by a flatter second slope, which is a most
desirable condition, as it may be interpreted as the state being
distinguished quickly with less deviation from the initial state.
Now we reach a question naturally: how would one judge
the quality of a measurement? One parameter determining
the quality of a measurement is the localization rate, which
is related to the signal-to-noise ratio. The characteristic time
is defined as the minimum time when the two possibilities

Figure 6. Influence of t , from the top: t = 0.1 × 10−4, 10−4,
5 × 10−4 D1.

Figure 7. Influence of D0: from the top D0 = 0, 0.5, 1D1.

Figure 8. Comparison of measurement quality for various D1. The
dashed lines are the corresponding characteristic times.

of the electron locality are distinguishable. In our system
it is given by T = (2D0 + D1)/D2

1 , which is twice the
inverse of the localization rate [4]. Within the characteristic
time, the closer we are to the initial state and the better is the
measurement. Figures 8 and 9 illustrate the comparisons of the
measurement qualities with various parameter combinations.
Figure 8 shows that the larger D1 is (strong coupling between
the qubit and the detector), the more sensitive is detection and
the RD reads out the state of the qubit in a shorter time with
less disturbance. In figure 9, D0 and D1 vary in their absolute
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Figure 9. Comparison of measurement quality for different values of
D0 at a fixed ratio of D0/D1 = 0.5.

values at the fixed ratio of D0/D1 = 0.5. It is clear from
the graph that the larger rates of RD (curve c) make better
measurement and strong coupling is therefore preferred. All
combinations of parameters we chose in the plots are based
on � and t values initially from the real system in [15] and
actually within reasonable ranges (around the same order of
magnitude) corresponding to reported experiment values. (For
example, RD current rate D1 ∼ 10–100 GHz compared to
75 GHz in [11]; tunneling rate t from 0.01–1 GHz compared
to 0.01 GHz [11] to 2.8 GHz [10].)

The above outcomes may provide reference for device
designers when they tackle optimum selection of the
parameters. For example, if the technology limits the
reduction of the quiescent current of a non-ideal detector, one
could increase the measurement tunneling rate D1 by device
designing or bias setting in experiments to compensate and
achieve better measurement quality.

5. Summary

It has been suggested that we use mesoscopic electronic
systems such as coupled quantum dots, superconducting
junctions, and single spin-polarised electrons as qubits. We
model the quantum measurement of the states of such systems
using the theory of open quantum systems. The requirements
to perform quantum calculations and a quantum measurement

(readout) appear to contradict each other. During the
manipulations the dephasing should be minimized, while a
quantum measurement should dephase the state of the qubit
as far as possible. We propose a measurement scheme to
study the dynamics of the system. To guarantee the calculated
evolution representing the state of a real physical system, we
derive the Lindblad-form master equation. We calculate the
conditional evolution of the states and the ensemble-averaged
evolution of the states of the coupled quantum dots as the qubit.
The results show the effects of various device parameters on
the quality of the measurements. Most reported experimental
measurements are limited by the finite bandwidths (device and
amplifier circuit, etc) and fail to count very fast successive
transitions within 100 μs [11]. To our knowledge there have
been no experiment reports on continuous measurement of the
electron location in a coupled-dot charge qubit such as the
one we are modeling in this paper. While direct comparison
with experimental results is unavailable, our model uses the
parameters that are comparable with those of the relevant real
experiments, as stated in section 4. Also the parameters used in
this paper are normalized by rate D1, which provides us with
the flexibility to fit individual experimental sets as references.
These may contribute to the device parameter selection and
experimental designing of the readout processes of a solid-state
quantum computer for better performance.
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